Exemplar Problem

This problem gives nice step by step idea for solving NGT problems. Please try to do it by yourself before looking at the solution.

Example 11 Find numerically the greatest term in the expansion of $(2 + 3x)^9$, where

$$x = \frac{3}{2}.$$

Solution We have $(2 + 3x)^9 = 2^9 \left(1 + \frac{3x}{2}\right)^9$

Now,
$$\frac{T_{r+1}}{T_r} = \frac{2^9 \left[{}^9C_r \left(\frac{3x}{2} \right)^r \right]}{2^9 \left[{}^9C_{r-1} \left(\frac{3x}{2} \right)^{r-1} \right]}$$
$$= \frac{{}^9C_r}{{}^9C_{r-1}} \left| \frac{3x}{2} \right| = \frac{\underline{|9|}{|r|9-r} \cdot \frac{|r-1|10-r|}{\underline{|9|}} \left| \frac{3x}{2} \right|}{\underline{|9|}}$$
$$= \frac{10-r}{r} \left| \frac{3x}{2} \right| = \frac{10-r}{r} \left(\frac{9}{4} \right) \qquad \text{Since} \quad x = \frac{3}{2}$$

Therefore, $\frac{T_{r+1}}{T_r} \ge 1 \implies \frac{90 - 9r}{4r} \ge 1$ $\Rightarrow 90 - 9r \ge 4r$ $\Rightarrow r \le \frac{90}{13}$ $\Rightarrow r \le 6 \frac{12}{13}$ (Why?)

Thus the maximum value of r is 6. Therefore, the greatest term is $T_{r+1} = T_7$.

Hence,
$$T_7 = 2^9 \left[{}^9C_6 \left(\frac{3x}{2} \right)^6 \right], \quad \text{where } x = \frac{3}{2}$$
$$= 2^9 \cdot {}^9C_6 \left(\frac{9}{4} \right)^6 = 2^9 \cdot \frac{9 \times 8 \times 7}{3 \times 2 \times 1} \left(\frac{3^{12}}{2^{12}} \right) = \frac{7 \times 3^{13}}{2}$$